Carbon Impacts of Burning Bioenergy

Helmut Haberl

Institute of Social Ecology Vienna Alpen-Adria Universitaet Klagenfurt, Wien, Graz

Skype presentation at the workshop
"The Limits of Bioenergy in Climate Mitigation",
Biofuelwatch and Friends of the Earth
9th October, London

The global carbon cycle

Source: umich.edu

CO₂ emissions from combustion per unit of energy

Coal 0.35-0.40 kg CO₂ / kWh

Oil products 0.26-0.30 kg CO₂ / kWh

Natural gas 0.20-0.22 kg CO₂ / kWh

Biomass $\approx 0.40 \text{ CO}_2 / \text{kWh}$

If C absorption during plant growth is neglected, CO₂ emissions of biomass combustion are higher than those of fossil fuel combustion.

,Conventional wisdom⁴

CO₂ emissions of biomass combustion need not be counted because plants absorb CO₂ when they regrow

Combustion of biomass provides carbon neutral energy

But ...

Land grows plants, whether it is used for bioenergy or not

Assuming that CO_2 emitted during biomass combustion is offset through plant growth results in many cases in double-counting of carbon.

Biomass combustion can only help to reduce CO₂ if

- (1) The biomass stems from additional plant growth or
- (2) The biomass would have decomposed rapidly if not used for energy

Critical issues determining the C balance of biomass combustion

Purpose-grown biomass

- What would have happened on the land if not used to grow bioenergy crops? C sequestration, food or energy crops, etc.?
- If food or feed crops are replaced: are they replaced? If so, how: intensification (increased yields = more plant growth) and/or land-use change (e.g. deforestation elsewhere -> iLUC)?

Residues

- What would have happened with the residue if not used for bioenergy? (burning, use as fertilizer)
- Reduced use of residues as fertilizer may deteriorate soils and result in C loss from cropland soils

Probabilistic analysis of iLUC emissions of US corn ethanol

- Emissions of petroleum-based gasoline are ≈ 100 gCO₂-eq MJ⁻¹
- Life-cycle emissions of corn-based ethanol excluding iLUC are 30-70 gCO₂-eq MJ⁻¹
- Neglecting iLUC is equivalent to assuming that iLUC emissions were zero

Figure: Plevin et al., 2010, Env Sci Tech 44, p. 8019 Other emission data: Chum et al., 2011, in: IPCC-SREEN

Annual wood harvest versus carbon stocks in Norwegian forests

Payback time of the C debt resulting from increased wood harvest, Norway

- Drop in the forest carbon stock due to increased logging
- Accumulated reduction in carbon emissions from coal combustion due to increased supply of pellets
- Accumulated reduction in carbon emissions from fossil fuels due to increased supply of liquid biofuels

We don't know which percentage of the global bioenergy potential is climate-friendly

- Beneficial examples
 - Biomass grown on degraded lands in dryland areas (e.g., salinized croplands in Australia) or on degraded, erosion-prone tropical lands
 - Biomass residues and biogenic wastes that would otherwise decompose (if not needed to sustain soil fertility)
- Questionable to detrimental examples
 - Most current ,first generation biofuels from cropland (rape/soy oil, ethanol from maize)
 - Increasing harvests in existing forestry systems to produce more fuelwood
- Disastrous examples
 - Palm oil produced on cleared tropical forests, especially if peatlands are lost
 - Almost any energy bioenergy pathway that results in deforestation (directly or indirectly)

Needed: a GHG cost curve of bioenergy

